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Abstract. An important question of railway vehicle dynamics is to understand 
which parameters affect the transformation between sub- and supercritical bifur-
cation in the stability assessment. Recent studies report effects of the equivalent 
conicity, the wheelset guidance stiffness and other parameters. Performing pa-
rameter variations using a typical bogie model with linear suspension compo-
nents but considering all nonlinearities of wheel/rail contact geometry, this paper 
shows that the type of bifurcation depends predominantly on the nonlinearity of 
the wheel/rail contact geometry, while the effects of the equivalent conicity, the 
creep forces and the wheelset guidance stiffness are less important. 
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1 Introduction 

Bogie hunting is an important safety phenomenon in context of railway vehicle dynam-
ics. A bifurcation diagram displaying the amplitude of the lateral wheelset oscillation 
as a function of speed is used to show the multiplicity of solutions in nonlinear railway 
vehicle dynamics. Fig. 1a shows an example of subcritical Hopf bifurcation: The 
branching solution drawn in dashed line arising at the Hopf bifurcation point (corre-
sponding to the linear critical speed vlin) is unstable and coexists with the stationary 
solution. Fig. 1b displays an example of supercritical Hopf bifurcation where the new 
branch is stable. 

Investigation of Hopf bifurcation of railway vehicles and its subsystems is topic of 
various research studies. From the point of view of railway practice, the main interest 
concerns the nonlinear critical speed vnlin, which is defined either by the saddle-node 
bifurcation (Fig. 1a) or by the Hopf bifurcation (Fig. 1b). In Fig. 1a displaying subcrit-
ical Hopf bifurcation, the range of speeds Δݒ = ୪୧୬ݒ   ୬୪୧୬ represents an “uncertainݒ −
region” [1] in which the dynamic performance of the railway vehicle largely depends 
on the initial conditions. A wheelset oscillation with a large amplitude from flange to 
flange can start at any speed inside the uncertain region Δv. In case of a supercritical 
bifurcation diagram as shown in Fig. 1b, there is no uncertain region (Δv = 0). A wheel-
set oscillation with a very small amplitude starts at speed ݒ୪୧୬ =  ୬୪୧୬ and increasesݒ 
steadily with growing vehicle speed. 
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The bifurcation diagram of railway vehicles can take various shapes, affected by 
many parameters, and especially by system nonlinearities, as shown in Fig. 1c and 1d. 
Multiple solutions can be present outside of the uncertain region Δv as well as if 
Δv = 0. However, only the uncertain region Δv is of major importance for railway prac-
tice as there can be either a wheelset oscillation with a large amplitude or a smooth run 
for the same speed. Therefore, all possible shapes of bifurcation diagrams can be as-
signed to either one of the two generic types of bifurcation diagrams shown in Fig. 1a 
and 1b. In this paper, these two basic categories are called subcritical (Δv > 0) or su-
percritical (Δv = 0) bifurcation diagram, respectively. The terms subcritical and super-
critical as used in this paper refer thus to the presence of an uncertain region of speed 
Δv and not to the Hopf bifurcation itself. 

 
Fig. 1. Two basic types of bifurcation diagrams as classified in this paper (top diagrams) and 
possible variants related to them (bottom diagrams). 

These two basic types of bifurcation diagrams differ significantly in terms of the be-
haviour of the vehicles at the stability limit. The knowledge of the bifurcation diagram 
for a particular vehicle and running conditions allows a better understanding of test 
results. In case of a subcritical bifurcation diagram, the self-excited hunting movement 
can occur suddenly. It is therefore not possible to estimate the margin before reaching 
the critical speed and exceeding the safety limits. Even a very smooth run at a given 
speed does not guarantee a great margin for speed increase before reaching the safety 
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limits. In case of a supercritical bifurcation diagram, on the other hand, the amplitude 
of the wheelset oscillations increases slowly with increasing speed, and a limit cycle 
with small wheelset amplitude is often present without exceedance of safety limits. The 
question of which parameters influence the type of bifurcation diagrams is therefore of 
great importance in the railway practice. 

Several publications investigated the bifurcation diagram of railway vehicles. Polach 
[2, 3] showed the effect of the nonlinearity in the wheel/rail contact geometry on the 
type of bifurcation diagrams. Recent publications [1, 4, 5] provided results regarding 
the impact of the equivalent conicity and the wheelset guidance stiffness on the type of 
Hopf bifurcation. An investigation of a suspended wheelset model in [1] reports that 
the longitudinal stiffness of the primary suspension (i.e. the wheelset guidance) has a 
great influence on the bifurcation diagram, changing from subcritical to supercritical 
with increasing stiffness. A theoretical and numerical investigation of a railway bogie 
in [4] presents similar conclusions regarding the influence of the longitudinal stiffness 
of the primary suspension. A parameter study of two China’s high-speed vehicle types 
in [5] concludes that the primary lateral wheelset guidance stiffness and the creep co-
efficient have a great influence on the type of bifurcation. 

However, previous publications did not adequately identify how the type of bifurca-
tion is affected by the nonlinearities of the wheel/rail contact, and which parameters 
determine the type of bifurcation for vehicles with linear suspension parameters. This 
paper investigates the parameters influencing the type of bogie hunting bifurcation di-
agram using a model with linear suspension and wheelset guidance parameters while 
considering all nonlinearities of the wheel/rail contact.  

2 Simulation Model and Parameters 

The investigation was carried out using a three-dimensional nonlinear half-vehicle 
model with one 2-axle bogie in multi-body simulation tool SIMPACK [6]. The move-
ments of the car body have been restricted to its vertical translation and it has been 
ensured that the simplified model has a similar dynamic behaviour as a model of the 
complete vehicle.  

The model of wheel/rail contact is described by the contact geometry, as well as with 
a creep force model. The equivalent conicity λeq is used in railway practice to charac-
terise the wheel/rail contact geometry in regard to running dynamics and stability. Pre-
vious research of the first author [2, 3] identified an important effect of the nonlinearity 
of wheel/rail contact geometry on the bifurcation behaviour of railway vehicles. A new, 
additional parameter called nonlinearity parameter NP has been introduced to charac-
terise this effect in [3, 7]. It is defined as the slope of the conicity function between the 
conicity value λ2 for the wheelset displacement amplitude of 2 mm and the conicity 
value λ4 for the wheelset displacement amplitude of 4 mm: 

 ܰ = ఒరିఒమ
ଶ

     [mmିଵ] (1) 

To investigate thoroughly the effect of wheel/rail contact geometry, a set of 12 wheel 
and rail profile combinations was developed with equivalent conicities λeq of 0.1, 0.2, 
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0.3 and 0.4 for an amplitude of 3 mm, and with three differing values of NP for each 
value of λeq. It is hardly possible to design profile combinations with a given value of 
λeq together with a target value of NP. Therefore, the target for NP distinguishes only 
between zero, and positive and negative value. The target contact geometries were 
achieved by modifying the wheel and rail profiles and rail inclination as well as by a 
slight variation of the track gauge around the nominal value of 1435 mm. The equiva-
lent conicity functions of the applied contact geometries can be seen in Fig. 2. 

 
Fig. 2. Equivalent conicity functions of wheel/rail contact geometries used in this study. 

The wheel/rail creep forces are computed using FASTSIM implemented in SIMPACK. 
The input parameters characterising the conditions between wheel and rail are the fric-
tion coefficient μ and the Kalker-factor kK, a weighting parameter reducing the initial 
slope of the creep force curve. 

The basic variant of the simulation model has the following parameters: 
 wheel/rail creep force model (dry rail): μ = 0.4, kK = 1 
 wheelset guidance stiffness per wheel: k1x = 8 kN/mm, k1y = 8 kN/mm. 

The investigations of hunting bifurcation were carried out varying the following pa-
rameters of the nonlinear wheel/rail contact model: 

 equivalent conicity λeq: 0.1, 0.2, 0.3 and 0.4 
 nonlinearity parameter: NP > 0, NP = 0 and NP < 0  
 wheel/rail friction coefficient μ: 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 
 Kalker-factor kK: 0.25, 0.50, 0.75 and 1. 

Regarding the vehicle parameters, the longitudinal k1x and lateral k1y wheelset guidance 
stiffness are known to have an important effect on the bogie stability. Both stiffness 
values k1x and k1y were varied between 2 kN/mm and 64 kN/mm. 

3 Procedure Applied for Investigations 

The computation of the nonlinear critical speed vnlin was carried out by “ramping”: 
Starting from an unstable speed, the vehicle runs in limit cycle on an ideal track, reduc-
ing the speed very slowly. The nonlinear critical speed is reached when the hunting 
motion disappears. 
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The linear critical speed vlin was evaluated by a set of simulations at constant speed, 
applying a very small disturbance of 0.2 mm in the lateral direction. At any given speed, 
a damping out of the hunting motion means a stable behaviour, and the presence of 
sustaining oscillations means an instable behaviour. If the linear and nonlinear critical 
speeds are the same (Δv → 0), the bifurcation diagram is of the supercritical type, oth-
erwise it is subcritical with an uncertain region Δݒ = ୪୧୬ݒ   −  .୬୪୧୬ݒ 

4 Results 

Fig. 3 shows exemplarily the effect of the longitudinal wheelset guidance stiffness k1x 
on the nonlinear critical speed vnlin and on the uncertain region Δv for the lateral wheel-
set guidance stiffness k1y = 2 kN/mm. The nonlinear critical speed increases with grow-
ing stiffness and reaches saturation at wheelset guidance stiffness values of about 
20 kN/mm, which corresponds to typical properties of railway vehicles. The supercriti-
cal bifurcation (Δv = 0) occurs for wheel/rail contact geometry with NP < 0, and for 
NP = 0 (conical profiles) for high values of longitudinal wheelset guidance stiffness and 
high equivalent conicity values, while there is a subcritical bifurcation for other param-
eter combinations. 

 
Fig. 3. Nonlinear critical speed and the uncertain region Δv in function of longitudinal wheelset 
guidance stiffness for different wheel/rail contact geometries.  

In the following we investigate the difference between the subcritical and supercritical 
bifurcation diagram in dependency on parameter variation of the wheel/rail creep force 
model and the wheelset guidance stiffness. Fig. 4 shows the switch between the sub-
critical and supercritical bifurcation, evaluated for the basic wheelset guidance stiffness 
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parameters k1x = 8 kN/mm and k1y = 8 kN/mm, in dependency on creep force parameters 
friction coefficient μ and Kalker-factor kK. A supercritical bifurcation (uncertain region 
speed range Δv = 0) is represented by white colour, the subcritical bifurcation with 
Δv > 20 km/h by dark colour. The subcritical bifurcation with a small uncertain region 
Δv between 0 km/h and 20 km/h is displayed in light colour to differentiate between a 
very pronounced and a less distinctive subcritical form of the bifurcation diagram. For 
NP < 0, a supercritical bifurcation (Δv = 0) is present for all creep force parameters with 
exception of combination μ = 0.1 and kK = 1, at which there is a subcritical diagram 
with a small Δv. For NP > 0, there is a subcritical bifurcation for almost all cases with 
kK = 0.5, 0.75 and 1. Considering coned wheel profiles, both the subcritical and the 
supercritical type of bifurcation are present. The nonlinearity parameter clearly shows 
the biggest influence on the type of bifurcation diagram, followed by the Kalker-factor, 
while the wheel/rail friction coefficient and the equivalent conicity have a rather little 
influence. 

 
Fig. 4. Effect of wheel/rail friction coefficient μ and Kalker-factor kK on the type of bifurcation 
diagram (represented by Δv) for different values of contact geometry parameters λeq and NP.  
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Fig. 5 shows the change between subcritical and supercritical bifurcation in dependency 
of wheelset guidance stiffness k1x and k1y using the base wheel/rail creep force param-
eters μ = 0.4 and kK = 1. In contrast to the other diagrams, the scaling of stiffness axes 
is not linear in regard to provide better resolution for the low stiffness at which the 
critical speed is more affected (see Fig. 3). Similarly, as for the variation of the creep 
force parameters, the nonlinearity parameter NP has the biggest influence on the type 
of bifurcation while the effect of the equivalent conicity λeq is very small. The impact 
of the wheelset guidance stiffness is most important for coned wheels (NP = 0). 

 
Fig. 5. Effect of wheelset guidance stiffness k1x and k1y on the type of bifurcation diagram (rep-
resented by Δv) for different values of contact geometry parameters λeq and NP. 
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5 Conclusions 

The investigations using nonlinear time step simulation demonstrate that for a model 
with linear suspension and wheelset guidance parameters, the nonlinearity parameter 
NP predominantly influences the transformation between the subcritical and the super-
critical type of bifurcation diagram. A subcritical bifurcation mostly occurs for NP > 0, 
and a supercritical bifurcation for NP < 0, confirming the results obtained with full non-
linear vehicle models [3]. However, there are some deviations from this rule, particu-
larly for small Kalker-factor and for low equivalent conicity. The wheelset guidance 
stiffness also has an effect on the bifurcation, particularly for coned wheel profiles 
(NP = 0), which, however, do not correspond to the actual wheel profiles in railway 
practice.  

Comparing our results with publications [1, 4, 5], some similarities can be observed. 
However, our investigation clearly shows the biggest influence of the nonlinearity of 
the wheel/rail contact geometry. This effect was not considered in [1, 4, 5], as coned 
wheels with a simplified flange contact described by a force function were used. The 
presented results demonstrate that the investigations using simplifications in the mod-
elling of nonlinear wheel/rail contact geometry cannot be considered as trustworthy 
because they neglect the dominating effect of the contact nonlinearity. 
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